44 research outputs found

    Urinary Carnosinase-1 Excretion is Associated with Urinary Carnosine Depletion and Risk of Graft Failure in Kidney Transplant Recipients: Results of the TransplantLines Cohort Study

    Get PDF
    Carnosine affords protection against oxidative and carbonyl stress, yet high concentrations of the carnosinase-1 enzyme may limit this. We recently reported that high urinary carnosinase-1 is associated with kidney function decline and albuminuria in patients with chronic kidney disease. We prospectively investigated whether urinary carnosinase-1 is associated with a high risk for development of late graft failure in kidney transplant recipients (KTRs). Carnosine and carnosinase-1 were measured in 24 h urine in a longitudinal cohort of 703 stable KTRs and 257 healthy controls. Cox regression was used to analyze the prospective data. Urinary carnosine excretions were significantly decreased in KTRs (26.5 [IQR 21.4–33.3] µmol/24 h versus 34.8 [IQR 25.6–46.8] µmol/24 h; p < 0.001). In KTRs, high urinary carnosinase-1 concentrations were associated with increased risk of undetectable urinary carnosine (OR 1.24, 95%CI [1.06–1.45]; p = 0.007). During median follow-up for 5.3 [4.5–6.0] years, 84 (12%) KTRs developed graft failure. In Cox regression analyses, high urinary carnosinase-1 excretions were associated with increased risk of graft failure (HR 1.73, 95%CI [1.44–2.08]; p < 0.001) independent of potential confounders. Since urinary carnosine is depleted and urinary carnosinase-1 imparts a higher risk for graft failure in KTRs, future studies determining the potential of carnosine supplementation in these patients are warranted

    N-Octanoyl Dopamine, a Non-Hemodyanic Dopamine Derivative, for Cell Protection during Hypothermic Organ Preservation

    Get PDF
    BACKGROUND: Although donor dopamine treatment reduces the requirement for post transplantation dialysis in renal transplant recipients, implementation of dopamine in donor management is hampered by its hemodynamic side-effects. Therefore novel dopamine derivatives lacking any hemodynamic actions and yet are more efficacious in protecting tissue from cold preservation injury are warranted. We hypothesized that variation of the molecular structure would yield more efficacious compounds avoid of any hemodynamic effects. METHODOLOGY/PRINCIPAL FINDINGS: To this end, we assessed protection against cold preservation injury in HUVEC by the attenuation of lactate dehydrogenase (LDH) release. Modification of dopamine by an alkanoyl group increased cellular uptake and significantly improved efficacy of protection. Further variation revealed that only compounds bearing two hydroxy groups in ortho or para position at the benzene nucleus, i.e. strong reductants, were protective. However, other reducing agents like N-acetyl cysteine and ascorbate, or NADPH oxidase inhibition did not prevent cellular injury following cold storage. Unlike dopamine, a prototypic novel compound caused no hemodynamic side-effects. CONCLUSIONS/SIGNIFICANCE: In conclusion, we demonstrate that protection against cold preservation injury by catecholamines is exclusively governed by strong reducing capacity and sufficient lipophilicity. The novel dopamine derivatives might be of clinical relevance in donor pre-conditioning as they are completely devoid of hemodynamic action, their increased cellular uptake would reduce time of treatment and therefore also may have a potential use for non-heart beating donors

    Life-threatening intoxication with methylene bis(thiocyanate): clinical picture and pitfalls. A case report

    Get PDF
    BACKGROUND: Methylene bis(thiocyanate) (MBT) is a microbiocidal agent mainly used in industrial water cooling systems and paper mills as an inhibitor of algae, fungi, and bacteria. CASE PRESENTATION: We describe the first case of severe intoxication following inhalation of powder in an industrial worker. Profound cyanosis and respiratory failure caused by severe methemoglobinemia developed within several minutes. Despite immediate admission to the intensive care unit, where mechanical ventilation and hemodialysis for toxin elimination were initiated, multi-organ failure involving liver, kidneys, and lungs developed. While liver failure was leading, the patient was successfully treated with the MARS (molecular adsorbent recirculating system) procedure. CONCLUSION: Intoxication with MBT is a potentially life-threatening intoxication causing severe methemoglobinemia and multi-organ failure. Extracorporeal liver albumin dialysis (MARS) appears to be an effective treatment to allow recovery of hepatic function

    Urinary Carnosinase-1 Excretion is Associated with Urinary Carnosine Depletion and Risk of Graft Failure in Kidney Transplant Recipients: Results of the TransplantLines Cohort Study

    Get PDF
    Carnosine affords protection against oxidative and carbonyl stress, yet high concentrations of the carnosinase-1 enzyme may limit this. We recently reported that high urinary carnosinase-1 is associated with kidney function decline and albuminuria in patients with chronic kidney disease. We prospectively investigated whether urinary carnosinase-1 is associated with a high risk for development of late graft failure in kidney transplant recipients (KTRs). Carnosine and carnosinase-1 were measured in 24 h urine in a longitudinal cohort of 703 stable KTRs and 257 healthy controls. Cox regression was used to analyze the prospective data. Urinary carnosine excretions were significantly decreased in KTRs (26.5 [IQR 21.4-33.3] µmol/24 h versus 34.8 [IQR 25.6-46.8] µmol/24 h; p < 0.001). In KTRs, high urinary carnosinase-1 concentrations were associated with increased risk of undetectable urinary carnosine (OR 1.24, 95%CI [1.06-1.45]; p = 0.007). During median follow-up for 5.3 [4.5-6.0] years, 84 (12%) KTRs developed graft failure. In Cox regression analyses, high urinary carnosinase-1 excretions were associated with increased risk of graft failure (HR 1.73, 95%CI [1.44-2.08]; p < 0.001) independent of potential confounders. Since urinary carnosine is depleted and urinary carnosinase-1 imparts a higher risk for graft failure in KTRs, future studies determining the potential of carnosine supplementation in these patients are warranted

    The CNDP1 (CTG)(5) Polymorphism Is Associated with Biopsy-Proven Diabetic Nephropathy, Time on Hemodialysis, and Diabetes Duration

    Get PDF
    Considering that the homozygous CNDP1 (CTG)5 genotype affords protection against diabetic nephropathy (DN) in female patients with type 2 diabetes, this study assessed if this association remains gender-specific when applying clinical inclusion criteria (CIC-DN) or biopsy proof (BP-DN). Additionally, it assessed if the prevalence of the protective genotype changes with diabetes duration and time on hemodialysis and if this occurs in association with serum carnosinase (CN-1) activity. Whereas the distribution of the (CTG)5 homozygous genotype in the no-DN and CIC-DN patients was comparable, a lower frequency was found in the BP-DN patients, particularly in females. We observed a significant trend towards high frequencies of the (CTG)5 homozygous genotype with increased time on dialysis. This was also observed for diabetes duration but only reached significance when both (CTG)5 homo- and heterozygous patients were included. CN-1 activity negatively correlated with time on hemodialysis and was lower in (CTG)5 homozygous patients. The latter remained significant in female subjects after gender stratification. We confirm the association between the CNDP1 genotype and DN to be likely gender-specific. Although our data also suggest that (CTG)5 homozygous patients may have a survival advantage on dialysis and in diabetes, this hypothesis needs to be confirmed in a prospective cohort study

    CORMs protect endothelial cells during cold preservation, resulting in inhibition of intimal hyperplasia after aorta transplantation in rats

    No full text
    P>Allograft vasculopathy is the leading cause for chronic transplant loss. We investigated if the addition of carbon monoxide releasing molecules (CORMs) to the preservation solution would protect the endothelium from cold preservation injury in an aortic transplantation model. In particular, we tested if CORM preserve vascular functioning and limit neo-intima formation following cold preservation (Cp). Abdominal aortas from Lewis or Fisher rats were subjected to Cp in University of Wisconsin (UW) solution to which 50 mu m of CORM-3 was added or not. Hereafter, whole mount staining, acetylcholine mediated vasorelaxation (AMV) and aortic transplantation was performed. In vitro CORM-3 protected human umbilical vein endothelial cells from Cp injury and prevented denudation and intercellular gap formation in aortic grafts. Cp resulted in loss of AMV of aorta segments. By contrast, AMV was preserved after the addition of CORM-3 during Cp. Two months after transplantation Cp of aorta grafts resulted in an increased adventitial remodelling and neo-intima formation. This was significantly blunted by CORM-3 in syngeneic recipients. Our study demonstrates that addition of CORM-3 to UW solution prevents endothelial damage, thereby maintaining vascular function directly after cold preservation. Hence, our findings might offer a novel strategy to prevent vascular damage during CP
    corecore